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Abstract. We present a method to derive atmospheric-observation-based estimates of carbon dioxide (CO2) fluxes at the 15 

national scale, demonstrated using data from a network of surface tall tower sites across the UK and Ireland over the period 

2013-2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative 

hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems 

faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes 

related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then 20 

combined a posteriori to determine net primary productivity. Two different models, CARDAMOM and JULES, provide prior 

estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux 

estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components.  The 

Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across 

the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large 25 

differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a 

total annual net biospheric flux for the UK of – 8 ± 79 Tg CO2 yr-1 (CARDAMOM prior) and – 64 ± 85 Tg CO2 yr-1 (JULES 

prior), where -ve values represent an uptake of CO2. These biospheric CO2 estimates show that annual UK biospheric sources 

and sinks are roughly in balance. These annual mean estimates are consistently higher than the prior estimates, which show 

much more pronounced uptake in the summer months.  30 
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1 Introduction 

There are significant uncertainties in the magnitude and spatiotemporal distribution of global carbon dioxide (CO2) fluxes to 

and from the atmosphere, particularly those due to terrestrial biogenic systems (Le Quéré et al., 2018). Reliable methods for 

quantifying carbon budgets at policy relevant scales (i.e. national or sub-national) will be important if we are to accurately and 35 

transparently evaluate each country’s progress towards achieving their Nationally Determined Contributions (NDCs) made 

following the Paris Agreement (UNFCCC, 2015). 

 

Regional terrestrial carbon fluxes can be estimated using a range of observational, computational and inventory-based methods. 

These include “bottom-up” approaches such as the up-scaling of direct flux measurements made using eddy covariance or 40 

chamber systems (Baldocchi and Wilson, 2001) and models of atmosphere-biosphere CO2 exchange. Flux measurements are 

important for understanding the small-scale processes responsible for carbon fluxes. However, they are relatively localised 

estimates (centimetres to kilometres), which are challenging to scale up to national levels. Biosphere models and land surface 

models (LSMs) can be used to estimate carbon fluxes using coupled representations of biogeophysical and biogeochemical 

processes, driven by observations of meteorology and ecosystem parameters (Potter, 1999; Clark et al., 2011; Bloom et al., 45 

2016). Such models describe processes to varying degrees of complexity and are driven by observational data to varying 

degrees of detail; hence predictions of biogenic GHG fluxes can vary significantly between models (Todd-Brown et al., 2013; 

Atkin et al., 2015). Atmospheric inverse modelling is a “top-down” approach that provides an alternative to the bottom-up 

approaches described above. It has been used to indirectly estimate country-scale (e.g. Matross et al., 2006; Schuh et al., 2010; 

Meesters et al., 2012) and continental (e.g. Gerbig et al., 2003; Peters et al., 2010; Rivier et al., 2010) biospheric CO2 budgets 50 

using atmospheric mole fraction observations, where the contribution of anthropogenic fluxes to the observations has been 

removed. In this approach, a model of atmospheric transport is used to relate spatiotemporally resolved surface fluxes of 

biospheric CO2 to atmospheric measurements of CO2 mole fractions. Biospheric fluxes derived from bottom-up approaches 

are often used as prior estimates in the inversion. Since atmospheric observations are sensitive to fluxes spanning tens to 

hundreds of kilometres (Gerbig et al., 2009), inverse methods are a valuable tool for examining national fluxes and evaluating 55 

estimates of surface exchange of CO2 at larger spatial scales. 

 

The United Kingdom (UK) government has set legally binding targets to curb greenhouse gas (GHG) emissions in an attempt 

to prevent dangerous levels of climate change. The Climate Change Act 2008 (The UK government, 2008) commits the UK 

to 80% cuts in GHG emissions, from 1990 levels, by 2050. To support this legislation, a continuous and automated 60 

measurement network has been established (Stanley et al., 2018; Stavert et al., 2018) with the goal of providing estimates of 

GHG emissions that are independent of the UK’s bottom-up anthropogenic inventory that must be reported annually to the 

UK Parliament and submitted to the United Nations Framework Convention on Climate Change (UNFCCC). Previous studies 

have used data from the UK Deriving Emissions related to Climate Change (UK-DECC) network to infer emissions of 
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methane, nitrous oxide and HFC-134a from the UK (Manning et al., 2011; Ganesan et al., 2015; Say et al., 2016). These studies 65 

found varying levels of agreement with bottom-up inventory methods, where estimates of GHG emissions are made using 

reported statistics from various sectors (e.g. road transport, power generation, etc.). Here we use the DECC network and two 

additional sites from the Greenhouse gAs Uk and Global Emissions (GAUGE) programme (Palmer et al., 2018) to estimate 

biospheric fluxes of CO2. Whilst anthropogenic emissions, which are the remit of the UK inventory, are not estimated in this 

study, it represents the first step towards a framework for estimating the complete UK CO2 budget. 70 

 

Atmospheric inverse modelling of GHGs using Bayesian methods presents some known challenges. Robust uncertainty 

quantification in Bayesian frameworks can be difficult as they require that uncertainties in the prior flux estimate, and 

uncertainties in the model’s ability to simulate the data, are well characterised. In practice, this is rarely the case and various 

studies have investigated the use of data-driven uncertainty estimation (e.g. Michalak, 2004; Berchet et al., 2013; Ganesan et 75 

al., 2014; Kountouris et al., 2018b). Inversions are also known to suffer from “aggregation errors”. One type of aggregation 

error arises from the way in which areas of the flux domain are grouped together to decrease the number of unknowns, because 

usually there are not sufficient data to solve for fluxes in each model grid cell (Kaminski et al., 2001). Furthermore, for reasons 

of mathematical and computational convenience, Gaussian probability density functions (PDFs) can be used to describe prior 

knowledge (Miller et al., 2014). However, Gaussian assumptions can lead to unphysical solutions in the case of atmospheric 80 

GHG emissions or uptake processes, as they permit both positive and negative solutions. 

 

CO2 presents further complications over other GHGs, in that atmosphere-biosphere CO2 exchange has a diurnal flux cycle that 

is significantly larger than the net flux, and has strong, spatially varying surface sources and sinks. Gerbig et al. (2003) was 

one of the first to develop an analysis framework for regional scale CO2 flux inversions. The study sets out the need to explicitly 85 

simulate the diurnal cycle of biospheric fluxes and highlights the importance of high spatial and temporal resolution data when 

addressing the unique problems of representation and aggregation errors caused by the highly varying nature of CO2 fluxes in 

both space and time. Inverse modelling studies of CO2 flux typically assume that anthropogenic fluxes are “fixed” in the 

inversion (e.g. Meesters et al., 2012; Kountouris et al., 2018a). This is based on the assumption that uncertainties in 

anthropogenic fluxes are low compared to those of the biospheric fluxes. However, it has been suggested that this may not 90 

necessarily be the case (Peylin et al., 2011). 

 

Here we outline a framework for evaluating the net biospheric CO2 exchange (net ecosystem exchange, NEE)  from a small to 

medium sized country using the high-resolution regional, Lagrangian transport model, the Numerical Atmospheric dispersion 

Modelling Environment (NAME, Jones et al., 2006). To address many of the problems outlined above, we use an adapted form 95 

of a hierarchical Bayesian, trans-dimensional Markov chain Monte Carlo (MCMC) inversion (Rigby et al., 2011; Ganesan et 

al., 2014; Lunt et al., 2016). In the hierarchical Bayesian framework presented in Ganesan et al. (2014), “hyperparameters” 

that define the prior flux and model-data “mismatch” uncertainty PDFs are included in the inversion, which is solved using a 
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Metropolis-Hastings MCMC algorithm (e.g. Rigby et al., 2011). This hierarchical approach has been shown to lead to more 

robust posterior uncertainty quantification in Bayesian frameworks where prior uncertainties are not well characterised 100 

(Ganesan et al., 2014). Lunt et al. (2016) built on this method, developing a “trans-dimensional” framework that accounted for 

the uncertainty in the definition of basis functions (the way in which flux grid cells are aggregated), and allowed this to 

propagate through to the posterior estimate. 

 

Gross primary productivity (GPP) and terrestrial ecosystem respiration (TER) estimates from the Joint UK Land Environment 105 

Simulator (JULES) and CARbon DAta MOdel fraMework (CARDAMOM) are used as prior flux constraints. JULES is a 

physically based, process driven model that estimates the energy, water and carbon fluxes at the land-atmosphere boundary 

(Best et al., 2011; Clark et al., 2011). CARDAMOM, on the other hand, is a model-data fusion framework ingesting satellite 

based remotely sensed estimates of state of terrestrial ecosystems to retrieve process parameters for the DALEC carbon balance 

model (Bloom and Williams, 2015; Bloom et al., 2016; Smallman et al., 2017). 110 

 

Below, we first describe our approach for modelling biospheric CO2 fluxes, including several novel aspects compared to 

previous work in this area. We then investigate the impact of using two different models that simulate biospheric fluxes  

(JULES and CARDAMOM) within our proposed inverse framework and discuss the discrepancies between the prior and 

posterior flux estimates. 115 

2 Method 

The main components of a regional atmospheric inverse modelling framework are the atmospheric CO2 mole fraction data 

itself, a model of atmospheric transport including a set of boundary conditions at the edge of the regional domain and some 

initial information or “first guess” of regional CO2 fluxes. These components are combined in an inversion set-up with a 

mechanism for dealing with uncertainties in the inputs. To make the problem computationally manageable, the regional domain 120 

is often decomposed into a number of basis functions, describing a spatial grouping of grid cells within which fluxes are scaled 

up or down. The selection of these basis functions constitutes a further key element of the atmospheric inverse problem.  

2.1 Site location and measurements 

This study focuses on the years 2013 and 2014. During this period, atmospheric CO2 mole fractions were continuously 

measured at six sites across the UK and Republic of Ireland (see Table 1 for site information and Fig. 1 for the location of the 125 

sites). Four of these sites originally formed the UK-DECC network and are described in Stanley et al. (2018), whilst two were 

developed under the GAUGE programme and are described in Stavert et al. (2018). The site at Mace Head, Republic of Ireland, 

is a coastal, 10 m above ground level (a.g.l.), station situated primarily to measure concentrations of background air arriving 

at the site from the Atlantic Ocean. The Laboratoire des Sciences du Climat et de l’Environnement (LSCE) and the 
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Environmental Protection Agency (EPA) are responsible for making CO2 measurements at this site, with the support of the 130 

National University of Ireland Galway. Air is sampled from a 23 m.a.g.l. inlet (see Vardag et al., 2014 for a full site 

description). All of the UK sites are tall-tower stations (with inlets ranging from 42 to 248 m.a.g.l), designed to measure 

elevated greenhouse gas mole fractions as air is transported over the surface in the UK and Europe. 

 

Continuous CO2 measurements are made at all stations using cavity ring-down spectrometers (CRDS: Picarro G2301 or 135 

G2401). CRDS data are corrected for daily linear instrumental drift using standard gases and for instrumental non-linearity 

using calibration gases, spanning a range of above and below ambient mole fractions, on a monthly basis (Stanley et al., 2018). 

Calibration and standard gases are of natural composition and calibrated at the GasLab Max Planck Institute for 

Biogeochemistry, Jena, or the World Calibration Centre for CO2 at Empa, linking them to the World Meteorological 

Organisation (WMO) X2007 scale (Stanley et al., 2018; Stavert et al., 2018). At sites with multiple inlets, measurements are 140 

taken for the same length of time at each inlet, each hour. This means that measurements at each height at Bilsdale and 

Tacolneston (with 3 inlets) are taken continuously for roughly 20 minutes every hour, and at Heathfield and Ridge Hill (with 

2 inlets) measurements are taken continuously for roughly 30 minutes at each inlet every hour. For the purposes of the inverse 

modelling carried out in this study, the continuous CRDS data are used from the highest measurement inlets and averaged to 

a 2-hour time resolution. Further information about the instruments, measurement protocol and uncertainty estimates can be 145 

found in Stanley et al. (2018) and Stavert et al. (2018). 

2.2 Atmospheric transport model 

In this work we use a Lagrangian particle dispersion model (LPDM), NAME, which tracks thousands of particles back in time 

from observation locations. The model determines the locations where air masses interacted with the surface, and therefore 

where surface CO2 sources and sinks could contribute to a CO2 concentration measurement. The model provides a gridded 150 

sensitivity of each mole fraction observation to the potential flux from each grid cell and this is often referred to as the 

“footprint” of a particular observation (for further details, see e.g. Manning et al., 2011). 

 

At each two-hourly measurement time step, the model releases 20,000 particles, which are tracked back in time for 30 days, 

so that by the end of this period the majority of particles will have left the model domain (Fig. S1). Since most CO2 flux to the 155 

atmosphere occurs at the surface, we record the instances where the particles are in the lowest 40m of the atmosphere and 

assume that this represents the sensitivity of observed mole fractions to surface fluxes in the inversion domain. The domain 

used to calculate atmospheric transport covers most of Europe, the east coast of North and Central America and North Africa 

(-97.9˚ – 39.38˚ longitude and 10.729˚ – 79.057˚ latitude). The spatial resolution of the meteorological analysis dataset used 

to drive the model, from the Met Office Unified Model (Cullen, 1993), was 0.233˚ by 0.352˚ (roughly 25 by 25 km over the 160 

UK). 
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In many previous inverse modelling studies using LPDMs (e.g. Manning et al., 2011; Thompson and Stohl, 2014; Steinkamp 

et al., 2017) the footprint is assumed to be equal to the integrated air history over the duration of the simulation (e.g. 30 days, 

as in Fig. 1). Based on the assumption that fluxes have not changed substantially during the 30-day period, the integrated 165 

footprint can be multiplied by the prior flux and summed over all the grid cells in the domain to create a time series of modelled 

mole fractions at each measurement site. However, many CO2 inverse modelling studies using other LPDMs have 

disaggregated footprints back in time, capturing changes in surface sensitivity on timescales shorter than the duration of the 

simulation, thereby attempting to account for diurnal variation in CO2 fluxes (Denning et al., 1996; Gerbig et al., 2003; Gourdji 

et al., 2010). Thus far, a disaggregation such as this has not been used in NAME simulations, so we describe our method here. 170 

 

In our simulations, we determined the footprint for 2-hourly average periods back in time for the first 24 hours before the 

observation, and then replaced the first 24 hours of integrated sensitivities with these time-disaggregated footprints. Mole 

fractions were simulated by multiplying these footprints by biospheric flux estimates for the corresponding time, so that the 

variability in the source or sink of CO2 was represented in the modelled observations. This is demonstrated in Eq. 1, which 175 

yields the modelled mole fraction, 𝑦𝑡, for one 2-hourly measurement time step, 𝑡, at one measurement site.   

 

𝑦𝑡 =  ∑ ∑ 𝑓𝑝𝑡−𝑖,𝑗 × 𝑞𝑡−𝑖,𝑗
𝑛
𝑗=0

12
𝑖=0 +  ∑ 𝑓𝑝𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑗

𝑛
𝑗=0  ×  𝑞𝑚𝑜𝑛𝑡ℎ𝑗

 (1) 

 

Here i denotes the number of 2-hour periods back in time before the particle release at time 𝑡 and 𝑗 represents the grid cell 180 

where 𝑛 is the total number of grid cells; 𝑓𝑝𝑡−𝑖,𝑗 is one grid cell of the two-dimensional time-disaggregated footprint for that 

time; 𝑞𝑡−𝑖  is the one grid cell of the two-dimensional, two-hourly flux field corresponding to the time the particles were 

interacting with the surface; 𝑓𝑝𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑗
 is one grid cell of the remaining 29 day footprint and 𝑞𝑚𝑜𝑛𝑡ℎ𝑗

 is one grid cell of the 

monthly average flux. We find that the diurnal cycle of CO2 flux strongly impacts the mole fraction observations in the first 

24 hours of transport before an observation is made. However, the use of time-integrated footprints, multiplied by average 185 

fluxes for the remainder of the period incurs only minor errors in our simulation. An investigation of the impact of going 

further back in time (e.g. 72 hours) revealed some small differences in daily maximum and minimum CO2 concentration on 

some days in a forward model run (Fig. S2). Nevertheless, posterior UK net biosphere fluxes were in agreement, within the 

estimated posterior uncertainties, between an inversion using footprints disaggregated for 24 hours and one using footprints 

disaggregated for 72 hours (Table S1). 190 

2.2.1 Data selection and model uncertainty 

LPDMs are known to perform poorly under certain meteorological conditions. In particular, it is often assumed that model-

data mismatch should be smallest during periods when the boundary layer is relatively well mixed. A common approach is to 

only include daytime data in the inversion (e.g. Meesters et al., 2012; Steinkamp et al., 2017; Kountouris et al., 2018a) or 
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separate morning and afternoon averages (e.g. Matross et al., 2006). To make use of as much high frequency measurement 195 

information as possible, we use a filter based on two metrics to remove times of high atmospheric stability and/or stagnant 

conditions. The first metric is based on calculating the ratio of the NAME footprint magnitude in the 25 grid boxes in the 

immediate vicinity of the measurement station to the total for all of the grid boxes in the domain. A high ratio indicates times 

when a significant fraction of air influencing the observation point originates from very local sources, which may not be 

resolved by the model (Lunt et al., 2016). The second metric is based on the modelled lapse rate at each site, which is a measure 200 

of atmospheric stability. A high lapse rate suggests very stable conditions, which would be conducive for significant local 

influence. Thresholds for each of these criteria were chosen to preserve as much data as possible, whilst retaining only points 

that the model was (somewhat subjectively) found to resolve well. In practice, the filter retained many more daytime than night 

time points (see Fig. S3 for an analysis of the data removed in 2014) and inversion results were mostly similar to when only 

daytime data were used, however differences were seen in some months when stagnant conditions occurred for several daytime 205 

periods (Fig. S4).  

 

Model uncertainty (or model-data mismatch) has a measurement uncertainty component and a component that takes into 

account the ability of the model to represent real atmospheric conditions. The measurement uncertainty was assumed to be 

equal to the standard deviation (st. dev.) of the measurements over the 2-hour period to give an estimate of measurement 210 

repeatability and a measure of the sub-model-timescale variability in the observations. The 2-hourly measurement uncertainty 

was then averaged over the month to ensure that measurements of high concentrations were not de-weighted, as they are more 

likely to have greater variability and therefore a larger st. dev.. The measurement uncertainty is combined with a range of prior 

values for model uncertainty (as this is a poorly constrained quantity) and together the model-measurement uncertainty is one 

of the hyper-parameters solved in the inversion (further explained in Sect. 2.4.1). 215 

 

2.2.2 Boundary conditions 

The footprints from the LPDM only take into consideration the influence on the observations of sources intercepted within the 

model domain. Therefore, an estimate of the mole fraction at the boundary must be made and incorporated into the simulated 

mole fractions. To estimate spatial and temporal gradients in these boundary conditions we use the global Eulerian Model for 220 

OZone And Related chemical Tracers (MOZART, Emmons et al., 2010). The model was run using GEOS-5 meteorology 

(Rienecker et al., 2011) and global biospheric fluxes from the NASA-CASA biosphere model (Potter, 1999), global ocean 

fluxes from Takahashi et al. (2009) and global anthropogenic fluxes from the Emission Database for Global Atmospheric 

Research (EDGAR, EC-JRC/PBL, 2011). When particles leave the NAME model domain, we record the time and location of 

the exit point. We then use MOZART to find the concentration of CO2 at these locations to serve as prior boundary conditions. 225 

The global MOZART initial mole fraction field for January 2014 was scaled before commencing the 2014 MOZART run to 

match the surface South Pole value to the mean NOAA January 2014 flask value (Dlugokencky et al., 2018). This scaling 
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factor was also applied to any pre-January 2014 MOZART output to prevent any discontinuities in the boundary mole fraction 

fields. The mole fraction at each domain edge (N, E, S, W) is then scaled up or down during the inversion to account for 

uncertainties in the MOZART boundary conditions (Lunt et al., 2016). 230 

 

2.3 Prior information 

In this work, we used model analyses to provide prior information about biospheric fluxes. Two models (CARDAMOM and 

JULES) were used to assess how much influence the choice of biospheric prior has on the outcome of the inversion. The 

NAME model was used to simulate the contribution of anthropogenic and oceanic fluxes to the data, and this contribution was 235 

removed from the observations prior to the inversion. The fluxes used for this calculation are described below. The spatial and 

temporal resolution of the prior information is summarised in Table 3 and emissions from each source over the UK are shown 

in Figure 2. 

 

In a synthetic data study in which biospheric CO2 was inferred, Tolk et al., (2011) found that separately solving for positive 240 

fluxes (autotrophic and heterotrophic respiration combined, TER) and negative fluxes (GPP) in atmospheric inversions 

provided a better fit to the atmospheric mole fraction data than inversions that scaled NEE only. Equation 2 describes the 

relationship between these three variables: 

 

𝑁𝐸𝐸 = 𝑇𝐸𝑅 − 𝐺𝑃𝑃 (2) 245 

 

This separation has been applied in various studies demonstrating model set-ups with synthetic data, for example: geostatistical 

approaches (Göckede et al., 2010), ensemble Kalman filter methods (Zupanski et al., 2007; Lokupitiya et al., 2008) and 

Bayesian methods (Schuh et al., 2009). However, this separation is not routinely used in CO2 inversions, as there are only a 

limited number of real data studies where it has been implemented (e.g. Gerbig et al., 2003; Matross et al., 2006; Schuh et al., 250 

2010; Meesters et al., 2012).   

 

In this inversion, we separately solved for TER and GPP, and then combined them a posteriori to determine NEE. Similarly to 

the studies cited above, we find closer agreement with the data than if NEE were scaled directly. Furthermore, we note that, if 

only one factor is used to scale both TER and GPP, it is impossible for the inversion to respond to a prior that has, for example, 255 

too strong a sink but a source of the correct magnitude. To demonstrate this, we have carried out a synthetic test (Fig. S5) in 

which we have investigated the ability of our inversion system to resolve a “true” flux, created using the CARDAMOM prior 

fluxes but with a GPP that has been halved, in an inversion that used the full CARDAMOM fluxes as a prior. Figure S5(a) 

shows that the seasonal cycle of posterior fluxes for the inversion where GPP and TER are separated is able to change phase 

and manages to approach the “true” flux. In contrast, the seasonal cycle of posterior fluxes for the inversion where NEE is 260 
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scaled can only move towards the “true” flux by shallowing the amplitude without changing the phase, because reducing the 

sink means the source must also be reduced. This can also be seen in the posterior diurnal cycles of GPP, TER and NEE, which 

are shown as an average for June in Fig. S5(b) and Fig. S5(c). The inversion that separates the two sources is able to correctly 

estimate the diurnal cycle of the “true” GPP flux, which allows it to find a better estimate for the diurnal cycle of NEE than 

the case where NEE is scaled. Whilst this is an extreme case, a comparison of the CARDAMOM and JULES estimates 265 

demonstrates large relative differences in TER and GPP, which would be “hard wired” if only NEE were scaled (Figure S5(b)). 

 

Given the results of our simple synthetic test, separating GPP and TER in the inversion appears to be an important improvement 

on scaling NEE directly and it is what we have implemented here. However, in addition to the main inversions presented in 

this paper, where GPP and TER are separated, we have carried out two further inversions for JULES and CARDAMOM where 270 

only NEE is scaled. The results of these additional inversions are discussed in Sect. 4.1. 

2.3.1 CARDAMOM biospheric fluxes 

The CARbon DAta MOdel fraMework (CARDAMOM) uses a model-data fusion approach to retrieve location specific 

ensembles of parameters for the DALEC model (Bloom et al., 2016). CARDAMOM uses a Bayesian approach within a 

Metropolis-Hastings MCMC algorithm to compare model states and flux estimates against observational information to 275 

determine the likelihood of potential parameter sets guiding the parameterisation processes. DALEC simulates the ecosystem 

carbon balance, including uptake of CO2 via photosynthesis, CO2 loss via respiration, mortality and decomposition processes, 

and carbon flows between ecosystem pools (non-structural carbohydrates, foliage, fine roots, wood, fine litter, coarse woody 

debris and soil organic matter). GPP or photosynthesis is estimated using the aggregated canopy model (ACM; Williams et 

al., 1997) while autotrophic respiration is estimated as a fixed fraction of GPP. Mortality and decomposition processes follow 280 

first order kinetic equations (i.e. a daily fractional loss of the C stock in question). The mortality and decomposition parameters 

are modified based on an exponential temperature sensitivity parameter. Note that the current version of DALEC does not 

include a representation of the water cycle, rather water stress is parameterised through a sensitivity to high vapour pressure 

deficit. Comprehensive descriptions of CARDAMOM can be found in Bloom et al. (2016) and Bloom and Williams (2015) 

and DALEC in Smallman et al. (2017).  285 

 

The CARDAMOM analysis to generate the carbon flux priors was conducted at a weekly time step and 25 km × 25 km spatial 

resolution. The weekly time step information was downscaled to 2-hourly intervals, assuming that each day repeated 

throughout each week. Downscaling of GPP fluxes was assumed to be distributed through the daylight period based on 

intensity of incoming shortwave radiation. Respiration fluxes were downscaled assuming exponential temperature sensitivity 290 

(code for downscaling is available from the authors on request).  
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Observational information used in the current analysis are satellite-based remotely sensed time series of Leaf Area Index (LAI) 

(MODIS; MOD15A2 LAI-8 day version 5, http://lpdacc.usgs.gov/) a prior estimate of above ground biomass (Thurner et al., 

2014) and a prior estimate of soil organic matter (Hiederer and Köchy, 2012). Meteorological drivers were taken from ERA-295 

Interim reanalysis. Ecosystem disturbance due to forest clearances were imposed using Global Forest Watch information 

(Hansen et al., 2013). 

2.3.2 JULES biospheric fluxes 

The Joint UK Land Environment Simulator (JULES) is a process driven Land Surface Model (LSM) that estimates the energy, 

water and carbon fluxes at the land-atmosphere boundary (Best et al., 2011; Clark et al., 2011). We used JULES version 4.6 300 

driven with the WATCH Forcing Data methodology applied to Era-Interim reanalysis data (WFDEI) meteorology (Weedon 

et al., 2014) which were interpolated to a 0.25° × 0.25° (Schellekens et al., 2017). We prescribed the land cover for 9 surface 

types and the vegetation phenology for 5 plant functional types (PFTs) using MODIS monthly LAI climatology and fixed 

MODIS land cover and canopy height data (Berry, et al., 2009). The soil thermal and hydrology physics are described using 

the JULES implementation of the Brooks and Corey formulation (Marthews et al., 2015) with the soil properties sourced from 305 

the Harmonised World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009). Soil carbon was calculated as the equilibrium 

balance between litter-fall and soil respiration for the period 1990-2000 using the formulation of (Mariscal, 2015). The full 

JULES configuration and science options are available for download from the Met Office science repository 

(https://code.metoffice.gov.uk/trac/roses-u/browser/a/x/0/9/1/trunk?rev=75249). 

2.3.2 Anthropogenic fluxes 310 

Estimates of fluxes due to anthropogenic activity within the UK were obtained from the National Atmospheric Emissions 

Inventory (NAEI, http://naei.beis.gov.uk). The NAEI provides a yearly estimate of emissions, which we have disaggregated 

into a 2-hourly product, based on temporal patterns in activity data, varying on diurnal, weekly and seasonal scales. The 

inventory emissions were disaggregated according to the UNECE/CORINAIR Selected Nomenclature for sources of Air 

Pollution (SNAP) sectors (UNECE/EMEP, 2001). Figure 2(d) shows the seasonal and diurnal cycle for this inventory, summed 315 

over the UK, for 2014. Outside the UK, prior anthropogenic emissions come from the Emission Database for Global 

Atmospheric Research (EDGAR) v4.2 FT2010 inventory data for 2010 (EC-JRC/PBL, 2011). This is a fixed 2D map that is 

used throughout the inversion period.  

2.3.3 Ocean fluxes 

Prior ocean flux estimates are from Takahashi et al. (2009). They are based on a climatology of surface ocean pCO2 constructed 320 

using measurements taken between 1970 and 2008. The monthly UK coastal ocean flux (defined simply as the grid cells closest 

to the UK, up to a maximum distance of 500km) from this product is plotted in Fig. 2(e).  
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2.4 Inverse method 

2.4.1 Hierarchical trans-dimensional Bayesian inversion 

Like many atmospheric inverse methods, our framework is based on traditional Bayesian statistics, given by Eq. 3: 325 

 

𝜌(𝒙|𝒚) =  
𝜌(𝒚|𝒙)𝜌(𝒙)

𝜌(𝒚)
  (3) 

 

where 𝒚 is a vector containing the observations and 𝒙 is a vector of the parameters to be estimated (such as the flux and 

boundary condition scaling). The traditional Bayesian approach requires that decisions about the form of the prior PDF, 𝜌(𝒙), 330 

and likelihood function, 𝜌(𝒚|𝒙), are made a priori. These pre-defined decisions have the potential to strongly influence the 

form of the posterior PDF in an inversion (Ganesan et al., 2014). Instead, we introduce a second “level” to the traditional Bayes 

equation, to account for the fact that initial parameter uncertainty estimates are themselves uncertain. This is known as a 

“hierarchical” Bayes framework where additional parameters, known as hyper-parameters, are used to describe the 

uncertainties in the prior and the model.  335 

 

Alongside the additional hyper-parameters 𝜽, we also introduce an additional term, 𝑘, that describes the size of the inversion 

grid, following the trans-dimensional inversion approach described in Lunt et al. (2016). In this approach, the number of basis 

functions to be solved is not fixed a priori and hence 𝒙 has an unknown length. The number of unknowns is itself a parameter 

to be solved for in the inversion, with the uncertainty in this term propagating through to the posterior parameter estimates, 340 

more fully accounting for the uncertainties that are only tacitly implied within a traditional Bayesian approach. The full trans-

dimensional hierarchical Bayesian equation that is solved in our inversion thus becomes:  

 

𝜌(𝒙, 𝜽, 𝑘|𝒚) ∝  𝜌(𝒚|𝒙, 𝜽, 𝑘)𝜌(𝒙|𝜽, 𝑘)𝜌(𝑘)𝜌(𝜽)  (4) 

 345 

where θ is a set of hyper-parameters describing the uncertainty on 𝒙 (𝜎𝑥 ), the model-measurement error (𝜎𝑦 ), and the 

correlation timescale in the model-measurement covariance matrix (𝜏). These hyper-parameters are summarised in Table 2 

along with the prior PDFs used to describe them in this inversion set-up. 

 

In this study, we have adapted the trans-dimensional method to keep a fixed set of regional basis functions (described in Sect. 350 

2.4.3) but allow the inversions to have a variable time rather than space dimension. We perform our inversion calculations 

over one month at a time, but with the trans-dimensional case in time we find multiple scaling factors for each fixed region 

over the course of the inversion, down to a minimum daily resolution. Therefore, in this case 𝑘 is more specifically the 
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unknown number of time periods resolved in the inversion, which is important for the highly variable temporal nature of CO2 

fluxes. 355 

 

In general, there is no analytical solution to our hierarchical Bayesian equation, so we approximate the posterior solution using 

a reversible jump Metropolis-Hastings MCMC algorithm (Metropolis et al., 1953; Green, 1995; Tarantola, 2005; Lunt et al., 

2016). The algorithm explores the possible values for each parameter by making a new proposal for a parameter value at each 

step of a “chain” of possible values. Proposals are accepted or rejected based on the a comparison between the “current” and 360 

“proposed” state’s fit to the data (likelihood ratio), deviation from the prior PDF (prior ratio), and a term governing the 

probability of generating the proposed state versus the reverse proposal (proposal ratio).  More favourable parameter values or 

model states are always accepted; however, less favourable parameter values or model states can be randomly accepted in 

order to fully explore the full posterior PDF. The algorithm had a burn-in period of 5 × 104 iterations and was run for 2 × 105 

iterations to appropriately explore the posterior distribution. At the end of the algorithm a chain of all accepted parameter 365 

values is stored (if a proposal is rejected the chain will spend longer at the previously accepted value). A histogram of this 

chain describes a posterior PDF for each parameter so that statistics such as the mean, median and standard deviation can be 

calculated. The trace of each chain was examined qualitatively to ensure that the algorithm had been run for a sufficient number 

of iterations to converge on a result. 

2.4.2 Basis functions 370 

Our domain is split into five spatial regions separating West-Central Europe from North-East, South-East, South-West and 

North-West regions, shown in Fig. S1. Within the West-Central Europe area (the hashed region in Fig. S1), a map of the 

fraction of different plant functional types (PFTs) in each grid cell has been used to further break down the region. This is the 

same PFT map used in the JULES biospheric simulation (see Sect. 2.3.2). A scaling factor is solved in the inversion, scaling 

GPP and TER within maps of five or six PFTs: broadleaf tree, needleleaf tree, C3 grasses, C4 grasses, shrubland and, in the 375 

case of TER, bare soil. 

2.4.3 Definition of Jacobian matrix 

Footprints from NAME, prior fluxes, boundary conditions and basis functions are all combined into a matrix of partial 

derivitives, alternatively described as a “Jacobian” or “sensitivity” matrix, that describes the change in mole fraction with 

respect to a change in each of the input parameters. This is the “model” in the inversion set-up, denoted 𝐇 in the description 380 

of the linear forward model (Eq. 7), where 𝜺 is the mismatch between modelled “observations” and what has actually been 

measured in the atmosphere. 𝐇 has dimensions m (number of data points) by n (number of basis functions). 

 

𝒚 = 𝐇𝒙 +  𝜺  (7) 

 385 
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To create this model, we multiplied the footprints by the prior GPP and TER fluxes separately, then multiplied these by the 

fractional map of basis functions (described in Sect. 2.4.2) and summed over the area covered by each basis function. The 

boundary conditions were broken down by four further basis functions for each edge of the domain as explained in Sect. 2.2.2. 

Multiplying the sensitivity matrix by a vector of ones yields the prior modelled time-series at a site. Therefore, during our 

inversion, we are updating this vector of ones as a scaling factor, to scale up or down emissions for each PFT and biospheric 390 

component to better agree with the data. Whilst in theory we have posterior information about the gross GPP and TER 

biospheric components separately, we combine this into a net ecosystem exchange (NEE) flux estimate, as we believe this to 

be more robust (Tolk et al., 2011). Therefore, throughout this paper we discuss posterior NEE estimates, however the results 

of the separate sources can be found in the supplement in Fig. S5-S7. 

3 Results 395 

We have tested our CO2 inversion set-up using output from two different models of biospheric flux as a prior constraint and 

find estimates for UK biospheric CO2 flux from these two inversions. We first describe differences between the output from 

the two prior models, then present the UK flux estimates found with this method, along with the spatial distribution of posterior 

fluxes. 

3.1 Differences between CARDAMOM and JULES 400 

The CO2 fluxes from CARDAMOM and JULES differ both temporally and spatially. Figure 2 (a-c) shows UK fluxes of GPP, 

TER and NEE from the two models. Most notable differences are seen in TER where JULES has a large diurnal range whereas 

CARDAMOM has a small diurnal range. Averaged to monthly resolution, the fluxes are relatively similar although 

CARDAMOM has a higher TER flux from July to October. Diurnal ranges for GPP are more similar in magnitude, however 

JULES exhibits a stronger sink in spring with maximum uptake in June. CARDAMOM has maximum uptake in July and 405 

exhibits a stronger sink in autumn. Combining these two fluxes, we can see that the profile of NEE for both models is quite 

different. The daily maximum source from JULES remains relatively constant throughout the year, whereas the daily maximum 

source in CARDAMOM follows a similar seasonal cycle to the daily maximum sink (albeit with a smaller magnitude). Monthly 

net fluxes are similar between both models for much of the year although JULES has stronger uptake between March and June. 

 410 

In order to understand some of these seasonal differences we can compare the processes taking place in each model. The 

CARDAMOM system explicitly simulates the soil and litter stocks, growth and turnover processes. LAI is retrieved from the 

DALEC model (which was calibrated using MODIS LAI estimates at the correct time and location of the analysis, explained 

in Sect. 2.3.1) and updated at each weekly time step. In the JULES system, soil and litter carbon stocks are fixed values for 

each grid cell, calibrated from 1990-2000, and it uses a fixed climatology of LAI and canopy height. Therefore, variability in 415 

TER and GPP fluxes from JULES are governed by meteorology, primarily temperature but also significant signals from 
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photosynthetically active radiation and precipitation via the soil moisture. This gives CARDAMOM interannual variability in 

LAI and soil carbon stocks, whereas these parameters remain constant in JULES year to year. However, meteorology drives 

the JULES model at a 2-hourly timestep as opposed to a weekly time-step in CARDAMOM. Therefore, in the 2-hourly 

CARDAMOM product used here, the diurnal range is not explicitly simulated and is downscaled from a weekly resolution. 420 

This downscaling is done based on light and temperature curves as explained in Sect. 2.3.1. In both models, the autotrophic 

respiration is a fixed fraction of the GPP, roughly ranging from 0.1 to 0.5. Therefore, there are some large differences between 

the model processes, particularly in how the respiration fluxes are simulated. This could be leading to too small a diurnal range 

in CARDAMOM TER and too large a diurnal range in JULES TER. 

 425 

Figures 3 and 4 show spatial maps of GPP, TER and NEE from both models averaged over winter (December, January, 

February) and summer (June, July, August) months. The pattern of TER is similar for both models, however JULES always 

has a stronger source over Northern Ireland and CARDAMOM has a stronger source in east England. In winter there are only 

small spatial variations in CARDAMOM GPP fluxes, whereas JULES has its largest uptake in south-west England and Wales. 

In summer, the models are roughly in agreement in the size of the sink in Wales and the majority of England, however JULES 430 

has a stronger sink in Scotland and Northern Ireland and CARDAMOM has a stronger sink in central and south-east England. 

The differences between the models in GPP and TER lead to fairly different winter NEE flux maps. CARDAMOM is a net 

source everywhere in winter, with areas of strongest net source in southern Scotland, east and central England. JULES is a 

small net winter sink in Northern Ireland, Wales, and south and central England. Summer NEE fluxes are similar between the 

models, although JULES has a stronger net sink in Scotland and Northern Ireland.  435 

3.2 Posterior net UK biospheric CO2 flux 2013-2014 

We have derived estimates for annual NEE from the UK using CO2 flux output from the two different models of biospheric 

flux as prior information (Fig. 5 – blue and orange bars for CARDAMOM and JULES respectively): – 13±87
90 Tg CO2 yr-1 

(CARDAMOM prior) and – 76±90
91 Tg CO2 yr-1 (JULES prior) in 2013 and – 2±68

70 Tg CO2 yr-1 (CARDAMOM) and – 51±78
80 

Tg CO2 yr-1 (JULES) in 2014. These annual net flux estimates from both models agree within the estimated uncertainties and 440 

mean values are higher than their respective priors in both cases.  The uncertainties straddle the zero net flux line implying 

that the UK is roughly in balance between sources and sinks of biospheric CO2. However, according to the inversion using 

JULES, a net biospheric source is less likely than in the inversion using CARDAMOM. When added to the anthropogenic and 

ocean fluxes that remained fixed during the inversion we produce the following estimates for annual total net CO2 release from 

the UK (Fig. 5 – green and yellow bars for CARDAMOM and JULES respectively): 448 ± 87
90 Tg CO2 yr-1 (CARDAMOM 445 

prior) and 386 ± 90
91 Tg CO2 yr-1 (JULES prior) in 2013 and 418 ± 68

70 Tg CO2 yr-1 (CARDAMOM prior) and 369 ± 78
80 Tg CO2 

yr-1 (JULES prior) in 2014. While we are assuming that anthropogenic and ocean fluxes are perfectly known, the uncertainties 

on these fluxes are comparatively small (Peylin et al., 2011). When the anthropogenic source was varied by ± 10%, a 

conservatively large estimate of these uncertainties, we find posterior biospheric flux estimates using the CARDAMOM prior 
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that still suggest a balanced biosphere, and posterior flux estimates using the JULES prior that suggest a small net sink at the 450 

lowest end of the possibilities explored here (see Fig. S11). All mean annual posterior estimates, regardless of the 

anthropogenic source used, suggest the prior net biospheric flux is underestimated, i.e. posterior biospheric uptake of CO2 is 

smaller than predicted by the models. However, this is less statistically significant with the 2013 inversion using the 

CARDAMOM prior. 

 455 

The monthly posterior UK estimates using both models (Fig. 5) mostly agree well with each other within the uncertainties, 

however they are both notably different from the prior estimates, especially in 2014. The posterior total UK flux estimate, 

achieved by adding the posterior NEE fluxes to anthropogenic and coastal ocean fluxes, shows that, according to the 

CARDAMOM inversion, the UK may not be a net sink of CO2 at any time of year in 2013 and 2014. However, the JULES 

inversion suggests the UK is a net sink of CO2 in June of both years.  460 

 

Posterior seasonal cycle amplitudes are generally smaller than the prior amplitudes, except in the CARDAMOM inversion in 

2014. Table 5 gives the posterior maximum and minimum values of NEE, leading to seasonal cycle amplitudes of 469 Tg CO2 

yr-1 and 578 Tg CO2 yr-1 for 2013 and 633 Tg CO2 yr-1  and 737 Tg CO2 yr-1 for 2014, for the CARDAMOM and JULES 

inversions respectively. These values are 90% and 76% of the prior amplitudes in 2013 and 123% and 85% of the prior 465 

amplitudes in 2014.  

 

The largest differences between the prior and posterior are seen in spring and summer for both models. Posterior UK NEE 

estimates from the CARDAMOM inversion are in agreement with the prior for 11 months: during the first half of 2013, in the 

majority of winter months (December, January, February) and in June 2014. When the CARDAMOM inversion posterior UK 470 

NEE estimates are not in agreement with the prior, they are usually larger, with a maximum difference in 2013 of 235 ±91
92 Tg 

CO2 yr-1 in August and a maximum difference in 2014 of 551 ±84
80 Tg CO2 yr-1 in July, although in spring (March, April, May) 

2014 they tend to be smaller than the prior, with a maximum difference of −194 ±60
64 Tg CO2 yr-1 in April. Posterior UK NEE 

from the JULES inversion agrees with the prior for nine months during the two-year period, the majority of which are between 

November and February. Otherwise, the posterior estimate from the JULES inversion is larger than the prior with a maximum 475 

difference in 2013 of 318±71
70 Tg CO2 yr-1 in April and a maximum difference in 2014 of 407 ±72

76 Tg CO2 yr-1 in July. 

 

Looking at the spring and summer differences more closely, we find that the JULES model has a systematically lower net 

spring flux than the posterior, and the CARDAMOM model is either in agreement with or higher than the posterior estimate 

of the net spring flux. Generally the models are underestimating the net summer flux (to the greatest extent in 2014) although 480 

the summer estimate from the JULES inversion in 2013 is not statistically different from the prior. The average spring 

difference between the posterior and the prior for the CARDAMOM inversion is −2 ±88
89 Tg CO2 yr-1 in 2013 and −133 ±63

67 

Tg CO2 yr-1 in 2014, whereas for the JULES inversion it is 219 ± 87 Tg CO2 yr-1 in 2013 and 164 ±65
67 Tg CO2 yr-1 in 2014. 
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The average summer difference for the CARDAMOM inversion is 135 ±108
111 Tg CO2 yr-1 in 2013 and 263 ±83

82 Tg CO2 yr-1 in 

2014, whereas for the JULES inversion it is 94 ±107
104 Tg CO2 yr-1 in 2013 and 312 ± 85 Tg CO2 yr-1 in 2014. The prior sink 485 

in June as estimated by the JULES model is nearly twice that of CARDAMOM and posterior estimates tend to agree with the 

CARDAMOM prior in this month. 

 

Figure S8(c) shows the daily minimum and maximum in the posterior net biospheric estimates for 2014. It is worth bearing in 

mind at this point that while the temporal resolution of the inversion is flexible, it can go down to a minimum resolution of 490 

one day (as explained in Sect. 2.4.1). Therefore, the diurnal profile of TER and GPP for each model is imposed, however it 

can be scaled up or down from day to day. For both inversions, the posterior NEE flux has a similar profile. Compared to Fig. 

2(c) the inversion tends to a seasonal cycle in daily maximum uptake that resembles that of the JULES model prior, with a 

turning point in maximum uptake occurring abruptly between June and July, a steep gradient in spring and a shallow gradient 

in autumn. On the other hand, the seasonal cycle in daily maximum source resembles that of the CARDAMOM model prior, 495 

which has a stronger seasonal variation compared to that of the JULES model prior, albeit with a larger amplitude. This would 

suggest that the underestimation in net spring flux seen in the JULES prior is generally due to the model underestimating the 

spring source, rather than overestimating the spring sink. It also suggests that the overestimation in net summer flux in the 

CARDAMOM prior is possibly a combination of the model overestimating the summer sink and underestimating the summer 

source. The overestimation in the net summer flux in JULES is more likely to be due to an underestimation of the summer 500 

source. However, as diurnal fluxes vary on a scale nearly an order of magnitude larger than that of the monthly fluxes, it is 

clear that any relatively small changes in the maximum source or sink will have a relatively large effect on the daily net flux. 

Therefore, the monthly net flux is the more robust result here and we are not able to confidently draw conclusions from the 

sub-monthly results. 

3.3 Posterior spatial distribution of biospheric fluxes 505 

Figure 6 shows mean posterior net biospheric fluxes (NEE) for winter 2013 and summer 2014 from both the CARDAMOM 

and JULES inversions. In winter 2013, posterior NEE fluxes from the CARDAMOM inversion are fairly heterogeneous and 

are largest over south-west Scotland and east and central England. This posterior spatial distribution is roughly similar to the 

prior. From the inversion using JULES prior fluxes, the posterior net biospheric flux is much smoother than it is for the 

inversion using CARDAMOM. It is largest in north-west England and almost zero in east England. The whole of south/central 510 

England, Wales, and Northern Ireland have increased posterior winter fluxes compared to the prior, turning these areas from 

a net sink in the prior to a net source in the posterior. 

 

In summer 2014, NEE fluxes from the two inversions display many similarities, with areas of net source in east, central 

(extending further south in the JULES inversion) and north-west England and areas of net sink elsewhere. However, the net 515 

sink in JULES is larger than CARDAMOM in Scotland, south Wales, Northern Ireland and south-west England. This differs 
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from the prior flux maps, which have only very small areas of small net uptake in central England in CARDAMOM and in 

east England in JULES. Both the CARDAMOM and JULES posterior fluxes generally display reduced uptake compared to 

the prior, except in north Wales.    

3.4 Model-data comparison 520 

Simulated mole fractions are greatly improved after the inversion, with R2 values increasing by a minimum of 0.29 and up to 

0.51 (to give values ranging between 0.54 and 0.74) and root mean square error (RMSE) decreasing by at least 0.29 ppm and 

up to 2.51 ppm (to give values ranging between 1.34 ppm and 2.56 ppm). Table S2 shows all statistics for the prior and 

posterior mole fractions compared to the observations of atmospheric CO2 concentration. In terms of R2, the best fit to the data 

is observed at Heathfield in the CARDAMOM inversion and Angus in the JULES inversion. In terms of RMSE, the best fit to 525 

the data is observed at Angus in the CARDAMOM inversion and Mace Head in the JULES inversion. The smallest posterior 

mean bias is observed at Angus in the CARDAMOM inversion and Ridge Hill in the JULES inversion. Figures S9 and S10 

show the residual mole fractions in 2014. The Figures show that residuals are somewhat larger during the summer than the 

winter. 

4 Discussion 530 

4.1 Inversion performance 

Solving for both TER and GPP separately allows the JULES-prior and CARDAMOM-prior inversions to converge to a similar 

posterior solution. Using two very different prior NEE flux estimates, we produce two similar posterior NEE flux estimates 

that have a similar seasonal amplitude, and agree on the majority of monthly and all annual fluxes within the estimated 

uncertainties. This indicates that our results are driven by the data rather than determined by the prior. However, when we 535 

carry out the same inversion but scale NEE (Fig. S12) we find the two posterior flux estimates do not converge on a common 

result. The posterior seasonal cycles remain relatively unchanged compared to the prior and annual net biospheric flux 

estimates tend to be similar to, or larger than, the prior. These annual net biospheric flux estimates are therefore 3 – 39 times 

smaller than the inversion that separates GPP and TER, meaning the posterior estimates from the two types of inversions do 

not overlap, even within estimated uncertainties. Evaluating the statistics of how well the NEE inversions fit the data (Table 540 

S3), we find they do not perform as well as the separate GPP and TER inversion. However, this is to be expected to some 

degree, because separating the two sources gives the inversion more degrees of freedom to fit the data. 

 

As recommended by Tolk et al. (2011), we are only hoping to achieve an improved estimate for the net fluxes here rather than 

the gross GPP and TER fluxes themselves. The posterior gross fluxes are included in the supplement (Fig. S6-S8) but due to 545 

the correlation between the spatial and temporal distribution of GPP and TER they have not been presented in the main text. 

This can be seen in summer and winter flux maps (Fig. S5 and S6) and in the posterior annual flux estimates in Fig. S8(d), in 
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particular where JULES TER and GPP show similarly large differences from the prior. This could also be a result of the 

imposed diurnal cycle, as it would appear the posterior TER flux in the JULES inversion is tending to a higher daily minimum, 

matching that of the CARDAMOM prior, and may ultimately be trying to move towards a smaller diurnal variation in TER. 550 

However, because the whole diurnal cycle must be scaled, the daily maximum TER must also increase and may mean the GPP 

must increase, causing increased uptake, to compensate for the increased source from TER. Allowing flexibility on sub-daily 

timescales may lead to similar estimates of GPP and TER between the two inversions with different priors. However, questions 

remain over whether there is enough temporal information for this to be the case. 

 555 

The fact that common monthly and annual posterior net biospheric flux estimates are reached when the prior biospheric fluxes 

are spatially and temporally different would suggest that the choice of prior is not necessarily a major factor in guiding the 

inversion result for our network, when GPP and TER are scaled separately. In this respect, it is also particularly encouraging 

that the seasonal cycles in the posterior diurnal range are similar for both inversions (Fig. S8(c)). 

4.3 Differences between prior and posterior NEE estimates 560 

The posterior seasonal cycle in both inversions differs significantly from the prior. This implies that the biospheric models 

used to obtain prior GPP and TER fluxes are either over- or under-estimating the strength of some processes, or they are 

omitting some processes altogether. The largest differences between the posterior solution and the prior model output are seen 

in spring and summer. In Sect. 3.2 we have shown that spring differences arise from an underestimation of the net spring flux 

in the JULES model and a correct/overestimation of the net spring flux in CARDAMOM. However, in summer (particularly 565 

in 2014), the posterior net UK fluxes are higher than both priors in July and August.  

 

One process that occurs during the months July and August is crop harvest. This is not taken into account in either of the 

models of the biosphere used in this work, thereby providing a possible explanation for the differences between the posterior 

and prior in these months. Harvest typically occurs between July and September and arable agricultural land covered 26% of 570 

the UK in 2013 and 2014 (DEFRA, 2014, 2015), so there is potential for unaccounted activity in this area to cause large 

changes to net CO2 fluxes. The areas of net source in summer (shown in Fig. 6) do also coincide with areas of large-scale 

agriculture (e.g. east and central England). Crop harvest potentially changes the biosphere in the following ways: firstly, crops 

mature en masse, leading to an abrupt loss of productivity. Secondly, during harvest there is an abrupt removal of biomass and 

input of harvest residues on the field. This increases litter input that is readily available for decomposition, increasing 575 

heterotrophic respiration. Thirdly, when the field is ploughed the soil is disturbed, which will again increase heterotrophic 

respiration. Finally, when the crop is no longer covering the soil surface this layer can become drier and the energy balance is 

altered. In Smallman et al. (2014), the reduction in atmospheric CO2 concentration due to crop uptake is reported for 2006 to 

2008 and an abrupt increase in atmospheric CO2 can be seen between June (peak source) and August, where CO2 uptake from 

crops is halted as a result of harvest. This may explain the abrupt shift from net sink to net zero / net source observed between 580 
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July and August in CARDAMOM in 2013 and June and July in both models in 2014. The earlier time in 2014 does coincide 

with a year of early harvest (DEFRA, 2015) although this may well be fortuitous. Later in the summer, there may be some 

plant regrowth in ploughed fields leading to increased GPP. This would be consistent with the shallower gradient observed in 

net biospheric fluxes between September and October 2013 in the CARDAMOM posterior estimate, between August and 

September 2014 in the JULES posterior estimate and the decrease in net flux observed between July and September 2014 in 585 

the CARDAMOM posterior estimate. 

 

If agricultural activity is the source of the July, August, September difference between prior and posterior UK NEE estimates, 

then it could amount to emissions of 4 – 10 % of currently reported annual anthropogenic emissions in 2013 and 17 – 19 % in 

2014. However, other explanations for this difference could be large uncertainties in the seasonal disaggregation of 590 

anthropogenic fluxes, uncertainties in the transport model, or a combination of over-/under-estimation of other biospheric 

processes. 

4.2 Implications for UK CO2 emissions estimates 

The results of UK biospheric CO2 fluxes using our set-up suggest the UK biosphere is roughly in balance, whereas prior 

estimates from models of the biosphere estimate a net sink. Even when we assume an uncertainty on our anthropogenic fluxes 595 

of 10% (a conservative estimate), inversions using both models still give mean posterior estimates that are larger than their 

respective priors (see Fig. S11). Therefore, when using models of the biosphere to contribute to inventory estimates of CO2 

emissions, care must be taken to attribute sufficient uncertainties to model estimates, otherwise the amount of CO2 taken up 

by the biosphere on an annual basis may be overestimated. Methods, such as the one described in this paper, could provide an 

important constraint on the UK’s biospheric CO2 fluxes as carbon sequestration processes, such as reforestation, and other 600 

land use change activities are increasingly used as policy solutions to contribute to carbon targets. 

5 Conclusion  

We have developed a framework for estimating net biospheric CO2 fluxes in the UK that takes advantage of recent innovation 

in atmospheric inverse modelling and a relatively dense regional network of measurement sites. Two inversions are carried 

out using prior flux estimates from two different models of the biosphere, CARDAMOM and JULES. Fluxes of GPP and TER 605 

are scaled separately in the inversions. Despite significant differences in prior biospheric fluxes, we find consistent monthly 

and annual posterior flux estimates, suggesting that the choice of model to provide biospheric CO2 flux priors in the inversion 

is not a major factor in guiding the inversion result with our framework and network. 
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Similarly to Tolk et al. (2011), we find that the NEE is more robustly derived if GPP and TER are solved separately, and then 610 

combined a posteriori. Our results suggest that inversions that scale only NEE could be underestimating net CO2 fluxes, as we 

find posterior estimates 3 – 39 times smaller than those obtained using an inversion where GPP and TER are separated. 

 

We find that the UK biosphere is roughly in balance, with annual net fluxes (averaged over the study period) of – 8 ± 79 Tg 

CO2 yr-1 and – 64 ± 85 Tg CO2 yr-1 according to the CARDAMOM and JULES inversions respectively. These mean annual 615 

fluxes are systematically higher than their respective priors, implying that net biospheric fluxes are underestimated in the 

models of the biosphere used in this study. The posterior seasonal cycles from both inversions differ significantly from the 

prior seasonal cycles and generally have a reduced amplitude of 90% and 76% of the prior amplitude in 2013 according to the 

CARDAMOM and JULES inversions respectively, and 85% of the prior amplitude in 2014 according to the JULES inversion, 

however the posterior seasonal cycle amplitude from the CARDAMOM inversion in 2014 was increased by 122%. Our results 620 

suggest an overestimated net spring flux in the JULES model and an overestimation of the net summer flux in both models of 

the biosphere. We propose that the difference seen between the prior and posterior flux estimates in summer and early autumn 

could be a result of the disturbance caused by crop harvest, leading to abrupt reduction in plant CO2 uptake and increase in 

respiration sources, as it is not taken into account in either model. However, this hypothesis is just one of a combination of 

uncertain factors that could lead to the differences seen, so further work would be needed to investigate the importance of crop 625 

harvest in UK CO2 emissions. 

 

The method developed and described here represents a first step towards looking at the UK biospheric CO2 budget with a 

hierarchical Bayesian trans-dimensional MCMC inverse modelling framework. Further work is required to robustly constrain 

biospheric CO2 fluxes, through comparison with other model set-ups. 630 
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Table 1: Measurement site information. 890 

Site Site code Location Inlet Height 

(m above ground level) 

Network 

Mace Head MHD 53.327 °N, 9.904 °W  23 LSCE 

Ridge Hill RGL 51.998 °N, 2.540 °W 90 DECC 

Tacolneston TAC 52.518 °N, 1.139 °E  185 DECC 

Heathfield HFD 50.977 °N, 0.231 °E 100 GAUGE 

Bilsdale BSD 54.359 °N, 1.150 °W  248 GAUGE 

Angus TTA 56.555 °N, 2.986 °W 222 DECC 

 

 

 

 

Table 2: Probability density functions (PDFs) for parameter and hyper-parameter scaling factors. Mean and st. dev. in fourth and fifth 895 
columns relate to lognormal PDFs, lower bound and upper bound relate to uniform PDFs. 

Parameter  PDF Mean / 

lower bound 

St. dev. / 

upper bound 

Prior uncertainty     

GPP 𝑥𝐺𝑃𝑃 Lognormal 1 1 

 𝜎𝑥 𝐺𝑃𝑃 Uniform 0.1 1.5 

Rtot 𝑥𝑅𝑡𝑜𝑡
 Lognormal 1 1 

 𝜎𝑥 𝑅𝑡𝑜𝑡
 Uniform 0.1 1.5 

Boundary conditions 𝑥𝐵𝐶  Lognormal 1 1 

 𝜎𝑥 𝐵𝐶 Uniform 0.01 0.05 

Model-measurement representation uncertainty   

Standard deviation 𝜎𝑦  Uniform 0.3 ppm 15 ppm 

Correlation timescale 𝜏 Uniform 1 hour 120 hours 
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Table 3: Specifications for different priors. 

 Spatial Resolution Temporal Resolution 

Biogenic fluxes   

JULES 0.25˚ × 0.25˚ 2-hourly 

CARDAMOM 25 km × 25 km (1˚ × 1˚ outside the UK) 2-hourly 

Anthropogenic fluxes   

NAEI (UK) 1 km × 1 km 2-hourly  

EDGAR (outside UK) 0.1˚ × 0.1˚ Yearly (using 2010) 

Ocean fluxes 4˚ × 5˚ Monthly (climatology) 

 

 

 905 

 

 
Table 4: Posterior UK estimates for the maximum net biospheric source and sink (values also shown in Fig. 5). The month in brackets 

indicates the month in which the maximum source/sink occurred. 

 910 

 Year Max. sink (Tg CO2 yr-1) Max. source (Tg CO2 yr-1) 

CARDAMOM 2013 −298 ± 136
140       (June) 171 ± 76

94         (January) 

 2014 −360 ± 88
87        (June) 273 ± 63

65         (November) 

JULES 2013 −456 ± 91
90         (June) 122 ± 78

83         (December) 

 2014 −542 ± 100
97        (June) 195 ± 70

65         (October) 
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Figure 1: Mean annual NAME footprint for 2014, for each of the six sites. MHD: Mace Head; RGL: Ridge Hill; HFD: Heathfield; TAC:  

Tacolneston; BSD: Bilsdale; TTA: Angus.  930 
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Figure 2: Prior UK fluxes in 2014. (a-c) Comparison of JULES (blue) and CARDAMOM (orange) monthly fluxes and minimum and 

maximum daily values for TER, GPP and NEE respectively. (d) Monthly anthropogenic fluxes and minimum and maximum daily values 935 
from the NAEI inventory within the UK. (e) Monthly coastal ocean net fluxes from the Takahashi et al. (2009) ocean CO2 flux product. 
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Figure 3: Average prior flux maps for winter 2013 (December 2013, January – February 2014). (a) TER from CARDAMOM; (b) TER from 

JULES; (c) the difference between CARDAMOM and JULES TER; (d) GPP from CARDAMOM; (e) GPP from JULES; (f) the difference 940 
between CARDAMOM and JULES GPP; (g) NEE from CARDAMOM; (h) NEE from JULES; (i) the difference between CARDAMOM 

and JULES NEE. 
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Figure 4: Prior average flux maps for summer 2014 (June – August 2014). (a) TER from CARDAMOM; (b) TER from JULES; (c) the 945 
difference between CARDAMOM and JULES TER; (d) GPP from CARDAMOM; (e) GPP from JULES; (f) the difference between 

CARDAMOM and JULES GPP; (g) NEE from CARDAMOM; (h) NEE from JULES; (i) the difference between CARDAMOM and JULES 

NEE. 
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Figure 5: Posterior monthly net UK CO2 flux (+ve is emission to atmosphere). Orange and blue monthly fluxes are posterior net biospheric 

(NEE) fluxes. Prior biosphere fluxes from JULES and CARDOMOM are shown in dashed orange and blue lines respectively. The fixed 

anthropogenic and ocean fluxes are denoted by the dark grey dashed line. Yellow and green monthly fluxes are the sum of the posterior NEE 

fluxes and the fixed anthropogenic and ocean fluxes. Shading represents 5th – 95th percentile. The bar charts represent annual net UK CO2 960 
flux for 2013 (left) and 2014 (right). Hashed bars denote prior annual fluxes, solid bars denote posterior annual fluxes. The bar colours 

correspond to the line colours: left hand bars for each model are NEE fluxes, right hand bars for each model are total fluxes (NEE + fixed 

sources). Uncertainty bars represent 5th – 95th percentile. CA – CARDAMOM. JU – JULES. 
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Figure 6: Posterior net biospheric (NEE) flux maps averaged over winter 2013 (December 2013, January – February 2014) and summer 965 
2014 (June – August 2014). (a) Winter NEE flux from CARDAMOM inversion. (b) Winter NEE flux from JULES inversion. (c) Summer 

NEE flux from CARDAMOM inversion. (d) Summer NEE flux from JULES inversion. 
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